0%

(ITIP 2016) Dehazenet:An end-to-end system for single image haze removal

Cai B, Xu X, Jia K, et al. Dehazenet: An end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198.



1. Overview


论文提出DehazeNet结构

  • Maxout unit to generate almost all haze-relevant feature
  • Bilateral rectified linear unit (BReLU)

1.1. 模型结构




  • Local Extremum
    假设medium transmission是局部常量。

1.2. BReLU



1.3. Maxout



Maxout activation functions can be considered as piece-wise linear approximations to arbitrary convex functions.

1.4. Haze-Relevant Feature

  • Dark Channel


Haze-free patches中至少有一个channel中的一些像素值非常低,接近0. 因此,dark channel feature与haze amount高相关,能够用来估计medium transmission.

  • Maximum Contrast


Haze transmission会减小对比度。因此,contrast与medium transmission高相关。

  • Color Attenuation
    Prior:Hazy导致saturation下降,brightness上升。

    Color attenuation feature:



与depth成正比,能够用于transmission estimation.

  • Hue Disparity
    Original image与semi-inverse image之间的hue disparity能够用于检测haze.


Semi-inverse Image